US009432288B2

a2 United States Patent

10) Patent No.: US 9,432,288 B2

Barner et al. 45) Date of Patent: Aug. 30,2016
(54) SYSTEM ON CHIP LINK LAYER (56) References Cited
PROTOCOL
U.S. PATENT DOCUMENTS
(71) Applicant: Cavium, Inc., San Jose, CA (US) 8560757 B2 10/2013 Pangborn et al
2009/0083263 Al* 3/2009 Felch ..o GOG6F 9/3851
(72) Inventors: Steven C..Barner, Shrewsbury, MA 2013/0103009 Al 4/2013 Pangborn et al.
(US); Craig A. Thomas, Sudbury, MA 2013/0111141 Al 5/2013 Kessler et al.
(US) 2014/0189094 Al* 7/2014 Ditya ..o.ccoooooooee.. HO4L 45/245
709/224
(73) Assignee: Cavium, Inc., San Jose, CA (US) OTHER PUBLICATIONS
(*) Notice: SUbjeCt. to any diSCIaimer{ the term of this Yoon et al., Virtual Channels vs. Multiple Physical Networks—A
patent is extended or adjusted under 35 ¢ arative Analysis, DAC’ 10, Jun. 13-18, 2010, Anaheim, Cali-
U.S.C. 154(b) by 374 days. fornia, p. 162-165.*
(21) Appl. No.: 14/194,049 * cited by examiner
(22) Filed: Feb. 28, 2014 Primary Examiner — Hoon I Chung
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Hamilton, Brook, Smith &
Reynolds, P.C.
US 2015/0249602 Al Sep. 3, 2015
57 ABSTRACT
(51) Imt.CL)])
GO6F 15/78 (2006.01) A network processing system provides coherent communi-
HO4L 12/803 (2013.01) cations between multiple system-on-chips (SOCs). Data
HO4L 12/721 (2013.01) messages between SOCs are assigned to virtual channels.
HO4L 12/713 (2013.01) An interconnect linking the SOCs divides the communica-
HO4L 12/709 (2013.01) tions into discrete data blocks, each of which contains data
(52) U.S.CL segments from several virtual channels. The virtual channels
CPC HO4L 45/72 (2013.01); GO6F 15/7807 can be implemented to control congestion and interference
(2013.01); HO4L 45/245 (2013.01); HO4L among classes of communications. During transmission, the
45/586 (2013.01) interconnect distributes the data blocks across several physi-
(58) Field of Classification Search cal ports linking the SOCs. As a result, communications

CPC GOG6F 15/807-15/7825; GOGF 2213/0038;
HO4L 45/245; HO4L 45/586
See application file for complete search history.

between SOCs is optimized with minimal latency.

28 Claims, 11 Drawing Sheets

&

STREAM
OF BLOCKS

US 9,432,288 B2

Sheet 1 of 11

Aug. 30, 2016

U.S. Patent

| "Old
- — 01 Wvaa
Zy1~ 391
y = T
o] =519 yIvROLNY | b
o a0 I I el B L e R P
s 251 stk g
NN I T L] ;
« adi 0F1 &y
gcl T 5 {1 FOVAIFINI 108 ..
HOLYOOTY for lad ioya NSNGSInoNd | | E3TIOHINGD | | 1OINNOOYAIN i
00d 3344 TSP I L PIHOVD 21 | LLNRRIZH0D 008] |0
NN LDV 1NN e
76 e AL LA
: ooy ol I -
810d °1od re ij 0] LOENNO AN ST
. 7| 15T amor| @7 weoi [+ | \—ASLERINGEEH0D Vs
L INNFOVREIN T 1 nkeh o | t
g (80D ID01ME | 75 = .
o 4l 74 . | IS] N Lo
g | REIESLECEI] g o TOUINGD it
! / WL —
= | ol R 78 3OV
AJONIN A (v Lvn aav anv HO13d [| e
O LY T e e Y % O IN ANES VR
MIGAON s o o T
ROONYY (O] (05S) HHCHO ONY i LSO
X] = ONASAINAIHOS NOISSHJN003a f 1
i -l L INOISSIHdI _, Erod ..
e Y ——
OIdS HSYH/1008 1ISML Lfvn

US 9,432,288 B2

Sheet 2 of 11

Aug. 30, 2016

U.S. Patent

W3LSAS 00S -L1NA

aotz

d0SS300dd
HHOMLIN 00S

aoez
JOVAILNI 108

001z

HO553004d
ABOMIIN 008

02z
JOVAIING10S

8¢

8022
FOVAILNII0S

4012

40SS3004d
MHOMLIN O0S

SNgI08

v02g
JOVAYILNI 108

v0i2

d0SS3004d
NHOMLIN 30S

asn
90d

5
WSS
1Y YK
X

CIOnNS
OldS
HSY 141004
1avh
Wl
Qv 7ovir

U.S. Patent

US 9,432,288 B2

Aug. 30,2016 Sheet 3 of 11
SOC NETWORK
PROCESSOR
L2
CORES CACHE/
CONTROLLER
320 (L2C)
|| — 330

310

[

oM gas |
lL SC!INTERFACE | g9
y 4
5CI HASU —
CONTROLLER
350 FIFO1 k>
RETRY FIFO2 K>
BUFFER
376 FIFO3 RG>
385 SCi

U.S. Patent Aug. 30, 2016 Sheet 4 of 11 US 9,432,288 B2

4
/OO

DATAWORD O

DATAWORD 1

DATAWORD 2

DATAWORD 3

DATAWORD 4

DATAWORD 5

DATAWORD 6

CONTROLWORD

U.S. Patent Aug. 30, 2016 Sheet 5 of 11 US 9,432,288 B2

BLOCK FORMATION
C)
D6
D5
D4
|
DZ
D1
0o
b STREAM
= g " OF BLOCKS
|
|
D4
03
D2
D
D01
C 08 D5 D4
| N2 01 Do
540 C | | D4
D3 D2 D1 o
LANE 31 [LANEZ2E |LANE 1] [LANEO FIG. 5A

U.S. Patent

BLOCK 2

BLOCK 1

BLOCK G

ave

AT

Aug. 30,2016 Sheet 6 of 11 US 9,432,288 B2
| |
! I
IOREG 12 i
OREQT | | Ve 3 Ve 2 VO 1
CTLWORD |1 |& © o
OREGLO |1 (B = S
MEM REQ 3 Jr z Z
ORSP2 1l asT
IORSP 11 ARRIVAL
ORSP 10
MEMRSP22 |1 T>~e Theeol T~~L IORSP2 1| IOREQ?2 |
MEMRSP21 |\ 1§
CTLWORD | [PMEM RSP2 Ty O
MEMRSP20 |1t]
MEMREQ22 | 10 REQ
MEMRSP21 Jepeee___) -
MEMRSP1 |~ MEMRGP 1] | MEM REQ 2
MEMREQ20 {eb----------—1 -
VARV
MEMREQ! LI
CTLWORD | 1 <
ORSPOO (L ______ S i
ORSPOO | | TMEMREQ 1] ORSPO
VEMREQ DA |-
MEMRSPO [« fMEM RSP O] JEM REG O
MEMREQ 0.0 j<f------——---1 r TIME N+
SRR |
INVALID i | TIME N
- FIRST
ARRIVAL
FIG. 5C FIG. BB

U.S. Patent Aug. 30,2016

Sheet 7 of 11

SYNC CONTROL WORD
63 BLOCK TYPE
110

61

60 ACK

59

0

54

83 INIT=0/RETRY=1

52 REQUEST

51
TX SEQUENCE
NUMBER

38

a7
RX SEQUENCE
NUMBER

24

23
CRC24

0 FlG. 6

US 9,432,288 B2

U.S. Patent Aug. 30,2016

Sheet 8 of 11

IDIE CONTROL WORD
63 BLOCK TYPE
M

g1

60 ACK

54

52

51
TX SEQUENGCE
NUMBER

38

37
RX SEQUENCE
NUMBER

24

23
CRC24

0 FIG. 7

US 9,432,288 B2

U.S. Patent

101

Aug. 30, 2016

DATA W/

BLOCK TYPE

ACK

CHANNEL 14-8

CREDITS

D6 CHANNEL

D& CHANNEL

D4 CHANNEL

D3 CHANNEL

D2 CHANNEL

D1 CHANNEL

D0 CHANNEL

Sheet 9 of 11

63
61

80
53

43

44
38

30
32
31

28

27

24
23

CREDITS CONTROL WORDS

100

US 9,432,288 B2

BLOCK TYPE

ACK

CHANNEL 7-D
CREDITS

D6 CHANNEL

D5 CHANNEL

D4 CHANNEL

D3 CHANNEL

D2 CHANNEL

D1 CHANNEL

D0 CHANNEL

CRCZ4

U.S. Patent

Aug. 30, 2016

DATA W/ POISON CONTROL WORDS

BLOCK TYPE

ACK

CHANNEL 14-8
POISON

D6 CHANNEL

D5 CHANNEL

D4 CHANNEL

D3 CHANNEL

D2 CHANNEL

D1 CHANNEL

D0 CHANNEL

CRC24

FIG. 9

Sheet 10 of 11

63

43
40
39

36
35

32

31
28

24
23

000

US 9,432,288 B2

BLOCKTYPE

ACK

CHANNEL7-0
POISON

DB CHANNEL

D5 CHANNEL

D4 CHANNEL

D3 CHANNEL

D2 CHANNEL

D1 CHANNEL

D0 CHANNEL

U.S. Patent

Aug. 30,2016 Sheet 11 of 11 US 9,432,288 B2

1000
}5/"1

RESET
1010

¥

INITIALIZATION
1020

" HANDSHAKE? ™NO__

YvES

NORMAL MODE
1040

AAAAAAAAAAAAA o ERROR? N\

Tves

RETRY MODE
1060

FIG. 10

US 9,432,288 B2

1
SYSTEM ON CHIP LINK LAYER
PROTOCOL

BACKGROUND

Typical network processors schedule and queue work
such as packet processing operations for upper level network
protocols, and allow processing with respect to upper level
network protocols (e.g., transport and application layers) in
received packets before forwarding the packets to connected
devices. The functions typically performed by network
processors include packet filtering, queue management and
priority, quality of service enforcement, and access control.
By employing features specific to processing packet data,
network processors can optimize an interface of a networked
device. A network processor can be implemented within a
system-on-chip (SOC), which can contain several process-
ing cores sharing a common set of resources within the SOC.

SUMMARY

Example methods and systems of the present invention
provide for coherent communications between a number of
system-on-chips (SOCs). In one embodiment, a data mes-
sage is generated at a first SOC for transmission to a second
SOC, where the first and second SOCs each include a cache
and a plurality of processing cores. The data message is
associated with one of a plurality of virtual channels. A data
block is generated to include data associated with each of the
plurality of virtual channels, and includes at least a portion
of the data message. Segments of the data block are distrib-
uted across a plurality of output ports at the first SOC, and
are then transmitted, via the plurality of output ports, to the
second SOC.

In further embodiments, the data block may be one of a
plurality of data blocks used to transmit the data message. As
such, the plurality of data blocks may be generated each to
include distinct portions of the data message. Each of the
data blocks may be distributed across the output ports for
transmission to the second SOC. Likewise, the data message
may be one of a plurality of data messages, and each data
block may include segments of each of the data messages.

In still further embodiments, the data block can be gen-
erated to include one or more segments storing an indicator
to confirm that another data block was received correctly at
the first SOC from the second SOC. A credit count may be
maintained on a per-virtual channel basis at each SOC,
which can increment and decrement the credit count in
response to receiving or transmitting data blocks or credits
that may be indicated within the data blocks. Transmittal of
data blocks can be permitted based on an adequate respec-
tive credit count.

In yet still further embodiments, the data block may be
stored to a retry buffer, which can be accessed in the event
of an unsuccessful transmittal, or cleared in response to
acknowledgement of a successful transmittal. In order to
initialize communications, a first initialization block may be
transmitted from the first SOC to the second SOC. Follow-
ing a response from the second SOC, a second initialization
block may be transmitted to the SOC before transmitting
data blocks.

In still further embodiments, a system may include a
plurality of linked SOCs. For example, a system may
include first and second SOCs each having respective input/
output (I/O) ports, caches, and a plurality of processors, and
each are configured to generate data messages for transmis-
sion to another SOC. Each data message is associated with

20

25

30

40

45

50

55

60

65

2

one of a plurality of virtual channels. An interface generates
a data block to include data associated with each of the
plurality of virtual channels, where the data block includes
at least a portion of the data message. Further, the interface
causes the data blocks to be transmitted between the first
SOC and the second SOC via the /O ports, where the
interface distributes segments of the data block across the
first set of 1/O ports.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more
particular description of example embodiments of the inven-
tion, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout
the different views. The drawings are not necessarily to
scale, emphasis instead being placed upon illustrating
embodiments of the present invention.

FIG. 1 is a block diagram illustrating a system-on-chip
(SOC) network services processor in which embodiments of
the present invention may be implemented.

FIG. 2 is a block diagram of a network processing system
including a plurality of interconnected SOCs.

FIG. 3 is a block diagram of an SOC including a SOC
coherent interconnect (SCI) interface.

FIG. 4 is a block diagram of an example data block
format.

FIG. 5A is a flow diagram illustrating a process of
transmitting data according to a SCI protocol.

FIG. 5B is a timing diagram illustrating receipt of data at
a plurality of virtual channels.

FIG. 5C is a diagram of a series of data blocks formed of
the data of FIG. SB.

FIG. 6 is a diagram of a synchronization block control
word.

FIG. 7 is a diagram of an idle block control word.

FIG. 8 is a diagram of data block with credit control
words.

FIG. 9 is a diagram of data block with poison control
words.

FIG. 10 is a state diagram of operation modes under a
SOC coherent interconnect (SCI) protocol in one embodi-
ment.

DETAILED DESCRIPTION

Before describing example embodiments of the present
invention in detail, an example network processor in which
embodiments may be implemented is described immediately
below to help the reader understand the inventive features of
the present invention.

FIG. 1 is a block diagram illustrating a network services
processor 100. The network services processor 100 delivers
high application performance using at least one processor
core 120. The network processor 100 can be implemented
within a system-on-chip (SOC), and can be a component of
a multiple-SOC system linked by a coherent interconnect as
described below with reference to FIG. 2.

The network services processor 100 processes Open Sys-
tem Interconnection network [.2-[.7 layer protocols encap-
sulated in received packets. As is well-known to those
skilled in the art, the Open System Interconnection (OSI)
reference model defines seven network protocol layers (L1-
L7). The physical layer (L1) represents the actual interface,
electrical and physical that connects a device to a transmis-
sion medium. The data link layer (L.2) performs data fram-
ing. The network layer (L.3) formats the data into packets.

US 9,432,288 B2

3

The transport layer (I.4) handles end to end transport. The
session layer (L5) manages communications between
devices, for example, whether communication is half-duplex
or full-duplex. The presentation layer (I.6) manages data
formatting and presentation, for example, syntax, control
codes, special graphics and character sets. The application
layer (L7) permits communication between users, for
example, file transfer and electronic mail.

The network services processor 100 may schedule and
queue work (packet processing operations) for upper level
network protocols, for example [.4-1.7, and allow processing
of upper level network protocols in received packets to be
performed to forward packets at wire-speed. Wire-speed is
the rate of data transfer of the network over which data is
transmitted and received. By processing the protocols to
forward the packets at wire-speed, the network services
processor does not slow down the network data transfer rate.

A packet is received for processing by a plurality of
interface units 122. A packet can also be received by a PCI
interface 124. The interface unit 122 performs pre-process-
ing of the received packet by checking various fields in the
L2 network protocol header included in the received packet
and then forwards the packet to a packet input unit 126. At
least one interface unit 122a can receive packets from a
plurality of X Attachment Unit Interfaces (XAUI), Reduced
X Attachment Unit Interfaces (RXAUI), or Serial Gigabit
Media Independent Interfaces (SGMII). At least one inter-
face unit 1225 can receive connections from an Interlaken
Interface (ILK).

The packet input unit 126 performs further pre-processing
of network protocol headers (e.g., L3 and L[4 headers)
included in the received packet. The pre-processing includes
checksum checks for TCP/User Datagram Protocol (UDP)
(L3 network protocols).

A free-pool allocator 128 maintains pools of pointers to
free memory in Level-2 cache memory 130 and external
DRAM 108. The packet input unit 126 uses one of the pools
of pointers to store received packet data in Level-2 cache
memory 130 or external DRAM 108 and another of the
pools of pointers to allocate work queue entries for the
processor cores 120.

The packet input unit 126 then writes packet data into
buffers in Level-2 cache 130 or external DRAM 108.
Preferably, the packet data is written into the buffers in a
format convenient to higher-layer software executed in at
least one of the processor cores 120. Thus, further process-
ing of higher level network protocols is facilitated.

The network services processor 100 can also include one
or more application specific co-processors. These co-pro-
cessors, when included, offload some of the processing from
the cores 120, thereby enabling the network services pro-
cessor to achieve high-throughput packet processing. For
example, a compression/decompression co-processor 132 is
provided that is dedicated to performing compression and
decompression of received packets. Other embodiments of
co-processing units include the RAID/De-Dup Unit 162,
which accelerates data striping and data duplication process-
ing for disk-storage applications.

Another co-processor is a Hyper Finite Automata (HFA)
unit 160 which includes dedicated HFA thread engines
adapted to accelerate pattern and/or signature matching
necessary for anti-virus, intrusion-detection systems and
other content-processing applications. Using a HFA unit
160, pattern and/or signature matching is accelerated, for
example being performed at rates upwards of multiples of
tens of gigabits per second. The HFA unit 160, in some
embodiments, could include any of a Deterministic Finite

10

15

20

25

30

35

40

45

50

55

60

4

Automata (DFA), Non-deterministic Finite Automata
(NFA), or HFA algorithm unit.

An T/O interface 136 manages the overall protocol and
arbitration and provides coherent I/O partitioning. The /O
interface 136 includes an I/O bridge 138 and a fetch-and-add
unit 140. The I/O Bridge includes two bridges, an /O Packet
Bridge (IOBP) 138a and an /O Bus Bridge (IOBN) 1385.
The 1/O Packet Bridge 138a is configured to manage the
overall protocol and arbitration and provide coherent /O
portioning with primarily packet input and output. The I/O
Bus Bridge 1385 is configured to manage the overall pro-
tocol and arbitration and provide coherent /O portioning
with primarily the I/O Bus. Registers in the fetch-and-add
unit 140 are used to maintain lengths of the output queues
that are used for forwarding processed packets through a
packet output unit 146. The I/O bridge 138 includes buffer
queues for storing information to be transferred between a
coherent memory interconnect (CMI) 144, an 1/O bus 142,
the packet input unit 126, and the packet output unit 146.

The miscellaneous /O interface (MIO) 116 can include
auxiliary interfaces such as General Purpose 1/O (GPIO),
Flash, IEEE 802 two-wire Management Interface (MDIO),
Serial Management Interrupt (SMI), Universal Asynchro-
nous Receiver-Transmitters (UARTs), Reduced Gigabit
Media Independent Interface (RGMII), Media Independent
Interface (MII), two wire serial interface (TWSI) and other
serial interfaces.

The network services provider 100 may also include a
Joint Test Action Group (“JTAG”) Interface 123 supporting
the MIPS EJTAG standard. According to the JTAG and
MIPS EJTAG standards, a plurality of cores within the
network services provider 100 will each have an internal
Test Access Port (“TAP”) controller. This allows multi-core
debug support of the network services provider 100.

A Schedule/Sync and Order (SSO) module 148 queues
and schedules work for the processor cores 120. Work is
queued by adding a work queue entry to a queue. For
example, a work queue entry is added by the packet input
unit 126 for each packet arrival. A timer unit 150 is used to
schedule work for the processor cores 120.

Processor cores 120 request work from the SSO module
148. The SSO module 148 selects (i.e., schedules) work for
one of the processor cores 120 and returns a pointer to the
work queue entry describing the work to the processor core
120.

The processor core 120, in turn, includes instruction cache
152, Level-1 data cache 154, and crypto-acceleration 156. In
one embodiment, the network services processor 100
includes 32 superscalar Reduced Instruction Set Computer
(RISC)-type processor cores 120. In some embodiments,
each of the superscalar RISC-type processor cores 120
includes an extension of the MIPS64 version 3 processor
core. In one embodiment, each of the superscalar RISC-type
processor cores 120 includes a cnMIPS II processor core.

Level-2 cache memory 130 and external DRAM 108 are
shared by all of the processor cores 120 and I/O co-processor
devices. Each processor core 120 is coupled to the Level-2
cache memory 130 by the CMI 144. The CMI 144 is a
communication channel for all memory and I/O transactions
between the processor cores 100, the /O interface 136 and
the Level-2 cache memory 130 and controller. In one
embodiment, the CMI 144 is scalable to 32 processor cores
120, supporting fully-coherent Level-1 data caches 154 with
write through. Preferably the CMI 144 is highly-buffered
with the ability to prioritize 1/O. The CMI is coupled to a
trace control unit 164 configured capture bus request so

US 9,432,288 B2

5

software can later read the request and generate a trace of the
sequence of events on the CMIL.

The Level-2 cache memory controller 131 maintains
memory reference coherence. It returns the latest copy of a
block for every fill request, whether the block is stored in
Level-2 cache memory 130, in external DRAM 108, or is
“in-flight.” It also stores a duplicate copy of the tags for the
data cache 154 in each processor core 120. It compares the
addresses of cache-block-store requests against the data-
cache tags, and invalidates (both copies) a data-cache tag for
a processor core 120 whenever a store instruction is from
another processor core or from an /O component via the [/O
interface 136.

In some embodiments, a plurality of DRAM controllers
133 supports up to 128 gigabytes of DRAM. In one embodi-
ment, the plurality of DRAM controllers includes four
DRAM controllers, each of the DRAM controllers support-
ing 32 gigabytes of DRAM. Preferably, each DRAM con-
troller 133 supports a 64-bit interface to DRAM 108. Addi-
tionally, the DRAM controller 133 can supports preferred
protocols, such as the DDR-III protocol.

After a packet has been processed by the processor cores
120, the packet output unit 146 reads the packet data from
the Level-2 cache memory 130, 108, performs [.4 network
protocol post-processing (e.g., generates a TCP/UDP check-
sum), forwards the packet through the interface units 122 or
the PCI interface 124 and frees the L2 cache memory
130/DRAM 108 used by the packet.

The DRAM Controllers 133 manages in-flight transac-
tions (loads/stores) to/from the DRAM 108. In some
embodiments, the DRAM Controllers 133 include four
DRAM controllers, the DRAM 108 includes four DRAM
memories, and each DRAM controller is connected to a
DRAM memory. The DFA unit 160 is coupled directly to the
DRAM Controllers 133 on a bypass-cache access path 135.
The bypass-cache access path 135 allows the HFA Unit to
read directly from the memory without using the Level-2
cache memory 130, which can improve efficiency for HFA
operations.

The network services processor 100 may be implemented
in a system on chip (SOC), by integrating all components of
the processor 100 within a single substrate. For applications
requiring higher processing capacity, multiple SOCs may be
interconnected through a common interconnect as described
below with reference to FIG. 2, where each SOC includes
one or more network services processor 100 as shown in
FIG. 1. The interconnect may be referred to as a SOC
coherent interconnect (SCI), and may enable processor-to-
processor communications for operations such as parallel
processing and shared cache or memory access. To enable
communications between the SOCs, the network services
processor 100 may include a SOC coherent interconnect
(SCI) interface 185. The SCI interface 185 may connect to
the CMI 144 to send and receive messages, such as memory
requests/responses and work requests/responses, with the
processing cores 120 and the L2C 130. Operation of the SCI
interface, as well as the SCI interconnect within a multiple-
SOC system, are described in further detail below with
reference to FIGS. 2-10.

FIG. 2 is a block diagram of a network processing system
200 including a plurality of interconnected SOCs 210A-D.
Each of the SOCs 210A-D may include a network processor
such as the processor 100 described above with reference to
FIG. 1, including a respective SCI interface 220A-D.

The network processing system 200 may be configured to
be addressable as a single SOC having multiple network
processors, which in turn may be addressable as a single

10

15

20

25

30

35

40

45

50

55

60

65

6

network processor. Thus, the system 200 may interface with
external elements in a manner similar to the network pro-
cessor 100 described above. To provide this capability, the
system 200 may include an interface to route external
communications to the respective ports at each of the
network processors 210A-D.

Further, to provide coherence among the network proces-
sors 210A-D, the network processors 210A-D may be linked
by a common SCI interconnect 270 at each respective SCI
interface 220A-D. The SCI interconnect 270 may include a
bus, series of point-to-point connections, or other combina-
tion of channels. The SCI interfaces 220A-D communicate
with one another to send and receive messages, such as
memory requests/responses and work requests/responses,
thereby providing coherence across the network processors
210A-D.

The SCI interfaces 220A-D communicate with one
another via a protocol described in example embodiments
below, referred to as the SCI protocol. In the examples
below, the SCI protocol may be a link-layer, point-to-point
protocol that provides for the reliable transmission of multi-
core interconnect messages between SOCs, also referred to
as nodes. The multicore interconnect messages may be
assigned to logical (“virtual”) channels based on a type or
class of the message. A substantial number of channels (e.g.,
15) enables greater precision in organizing messages and
controlling traffic. Messages sent on the same channel may
be ordered, while those sent on different channels may be
reordered depending on a priority or other configuration.

The messages (also referred to as “data messages™) may
be delineated into fixed-size (e.g., 8-byte) words and are
packed into fixed-size data blocks (e.g., 64-bytes). For an
embodiment implementing 8-byte words and 64-byte data
blocks, each data block may contain up to 7 words of data
and an 8-byte control word. The control word may be used
to specify the block type as well as the form of the control
word. Data blocks that contain valid data words may be
assigned a sequence number and stored in a retry buffer until
the remote link partner returns an acknowledgement. In the
event of an error, retransmission may include all blocks
newer than the failing sequence number. During transmis-
sion, the data block may be striped across a configurable
number of physical ports (“lanes™) for transmission via the
SCI interconnect 270.

FIG. 3 is a block diagram of an SOC 310, including a SCI
interface 385 in further detail. The SOC 310 may be
configured to include some or all of the elements of the
network processor 100 described above with reference to
FIG. 1, and may further be configured within a multiple-
SOC system such as the system 200 described above with
reference to FIG. 2. The SCI interface 385 may connect to
the CMI 344 to send and receive messages, such as memory
requests/responses and work requests/responses, with the
processing cores 320 and the L2C 330. For transmission to
external SOCs via the SCI, the SCI interface 385 may
include a SCI controller 350, retry buffer 370, and output
ports 360 including respective first-in-first-out (FIFO) buf-
fers. The SCI controller 530 may interface with the cores
320 and L2C 330 to exchange messages, and operates to
classify outgoing data messages by channels, form data
blocks comprising those data messages, and transmit the
data blocks via the output ports. Transmitted data blocks
may also be stored to the retry buffer 370 until receipt of the
data block is acknowledged by the receiver.

In this example embodiment, the SCI interface 385 is
configured for transmission of data across the SCI intercon-
nect. In order to receive SCI communications, the SOC may

US 9,432,288 B2

7

include an additional SCI interface (not shown), which may
be configured in a manner similar to the SCI interface 385,
with modifications as understood in the art. In particular, a
receiving SCI interface may omit a retry buffer, and may
include receiver ports in place of output ports. The SCI
interface 385 may be configured to have receiver ports in
addition to the output ports 360, where the SCI controller
350 may be configured to process received data blocks and
forward corresponding data messages to the processing
cores 320 and/or the L.2 cache/controller 330.

FIG. 4 is a block diagram of an example data block 400.
In an example embodiment as described above, outgoing
data messages may be delineated into fixed-size (e.g.,
8-byte) words and are packed into fixed-size data blocks
(e.g., 64-bytes). For an embodiment implementing 8-byte
words and 64-byte data blocks, each data block 400 may
contain up to 7 words of data (DATAWORD 0-DATA-
WORD 6) and an 8-byte control word (CONTROL WORD).
The control word may be used to specify the block type as
well as the form of the control word. The SCI interface (e.g.,
SCl interface 385 in FIG. 3) may generate the data block 400
to include data words according to a predetermined con-
figuration, for example by assigning each data word slot to
a given virtual channel.

The data block 400 illustrates a general data block format.
In example embodiments, the SCI interface may generate a
number of different types of data blocks each having a
particular application and format. In example SCI commu-
nications described below, four different block formats may
be employed, namely sync (FIG. 6), idle (FIG. 7), data with
credits (FIG. 8) and data with poison (FIG. 9). The block
formats may be distinguished by an indicator, “block type
field” included in the respective control word. While all
blocks may contain the same number of data words, the
validity of the data words can be specified in the control
word.

Before describing the particular block formats and their
applications, block formation is first described below with
reference to FIGS. 5A-C.

FIG. 5A is a flow diagram illustrating a process 501 of
forming and transmitting data blocks according to an
example SCI protocol. The process 501 may be performed
by an SCI interface such as the SCI interface 385 described
above with reference to FIG. 3. With reference to FIG. 3, a
SCI controller 350 receives data messages from the proces-
sor cores 320 and/or L.2 cache/controller 330 via the CMI
crossbar 344 (510). The data messages may be of a number
of different types, such as I/O requests and responses (e.g.,
inter-SOC work requests and responses) and memory
requests and responses (e.g., inter-SOC cache or memory
accesses). The data messages may be of any size, as they can
be segmented into a number of data words for transmission.
The SCI controller 350 may be configured to enable a
number of virtual channels (e.g., VC0-VC3), where each
virtual channel is associated with a specific type of data
message. In the example shown in FIG. 3, /O requests are
assigned to VCO0, I/O responses are assigned to VCI,
memory requests are assigned to VC2, and memory
responses are assigned to VC3. In further embodiments,
virtual channels may be configured in addition to, or in place
of, such channels, including virtual channels assigned to
more specific types of work or memory requests/responses,
and virtual channels assigned to specific processing cores.
Accordingly, the SCI controller classifies each data message
by type, assigning each message to a corresponding virtual
channel (520).

10

15

20

25

30

35

40

45

50

55

60

65

8

The SCI controller 350 then proceeds to generate a stream
of data blocks from the data messages at each virtual channel
(530). Each data block may have one or more slots available
for data words at each of the virtual channels. Alternatively,
if the number of virtual channels exceed the number of data
word slots in each data block, the SCI interface may select
the virtual channels receiving data word slots from data
block to data block. (Such a configuration is described below
with reference to FIG. 8.) Because a data message may be
larger than a data word, the data message can be segmented
into several data words for distribution among several data
blocks. Once the data blocks are formed, the SCI controller
350 forwards the data blocks to a number of output ports 360
for transmission to another SOC (540). The SCI controller
may stripe each data block across the output ports, specifi-
cally by distributing individual data words (or other division
of the data block) across the output ports in a cyclical order.
By striping the data blocks across the output ports, trans-
mission speed may be increased over serial transmission.
Further, by generating and transmitting data blocks as
described above, the SCI interface 385 may effectively
control communications traffic with precision among differ-
ent message types, as well as prevent interference among
competing data messages.

Conversely, when receiving data blocks from a remote
SOC, the SCI interface may operate the process 501 in
reverse order, with modifications as understood in the art.

FIGS. 5B and 5C show an example data block formation
from a set of data messages received to a SCI interface. FIG.
5B is a timing diagram illustrating receipt of data messages
at a plurality of virtual channels, while FIG. 5C is a diagram
of a series of data blocks formed of the data messages of
FIG. 5B. As shown in FIG. 5B, data messages of each type
can be received to the SCI interface at any time from time
N onward. Those data messages can be processed and
assigned to virtual channels as described above with refer-
ence to FIG. 5A. Once received and assigned a virtual
channel, the data messages may enter a per-virtual channel
queue and are inserted into a data block based on their place
in the respective queue. Although the ordering shown in
based on priority, alternative ordering methods, such as
per-channel slot reservation or round-robin, may be imple-
mented. In such a method, ordering may also be based on the
availability of data word slots for the respective virtual
channel.

As shown in FIG. 5C, the data messages are segmented
into individual words and formed into data blocks
(BLOCKO0-BLOCK2). To optimize throughput, the SCI
interface may be configured to transmit the data blocks as a
continuous stream. To transmit in this manner, the SCI
interface may generate data blocks with empty (“invalid”)
data words in the event that there are no pending data
messages in the virtual channel for the given data word slot.
For example, BLOCK1 includes an “invalid” data word in
a slot due to an insufficient number of data words in the VC3
queue at the time of block formation. Alternatively, the SCI
interface may configure the data words of each block
dynamically based on the occupancy at each virtual channel
queue, thereby minimizing the number of invalid words
placed within each data block. In such a configuration, rather
than employing predetermined slot assignments, the control
word of each block may be configured to identify the virtual
channel corresponding to each data word in the block.
However, invalid words may still be included if no data
messages are available at any virtual channel queue at the
time of block formation.

US 9,432,288 B2

9

As further illustrated in FIG. 5C, data messages can be
segmented into several discrete data words for transmission
in a plurality of data blocks. For example, the data message
“MEM Rsp 2” in VC3 is larger than a data word, and
therefore is divided into multiple data words, “MEM Rsp
2.0,” “MEM Rsp 2.1” and “MEM Rsp 2.2,” which are then
distributed to data blocks BLOCK1 and BLOCK2.

FIGS. 6-9 illustrate example data block formats, each of
which may be employed in SCI communications in an
example embodiment. FIG. 10 illustrates an SCI communi-
cations process by which each of the data block of FIGS. 6-9
may be implemented.

FIG. 6 is a diagram of an example synchronization block
(“sync block™) control word. Sync blocks may not contain
valid data words or credits, and consequently may not be
assigned a sequence number and are not written to the retry
buffer. Sync blocks may be used to perform retry handshakes
and initialization handshakes between the link partners. A
description of each field in the synchronization block is
provided in the table below:

TABLE 1

Example control word fields of a synchronization block.

Field

Bit Position Name Field Description

63:61 Block type Sync block indicated by “110”
60 ACK Acknowledge handshake request.
59:54 0 Zero.
53 Init = 0/ Indicate retry or initialization handshake.
Retry =1
52 Request Indicates handshake request.
51:38 X Indicates the sequence number that will be
Sequence assigned to the next TX data block. Used for
Number verification by the receiver.
37:24 RX Indicates the sequence number that will be
Sequence assigned to the next RX data block. Used for
Number verification by the receiver.
23:0 CRC24 A CRC error check that covers the entire data

block, including the control word with a zero-
filled CRC24 field.

FIG. 7 is a diagram of an example an idle block control
word. Idle blocks may not contain valid data words or
credits. Consequently, idle blocks may not be assigned a
sequence number and may not be written to the retry buffer.
However, idle blocks may return block acknowledgements
(ACKs). Idle blocks may be sent whenever a SCI interface
is not performing a retry/init handshake and either no
channel data is ready to be transmitted or no channel credits
are ready to be returned.

TABLE 2

Example control word fields of an idle block.

Field
Bit Position Name Field Description
63:61 Block type Idle block indicated by “111”
60 ACK Acknowledge 2 blocks correctly received.

59:52 0

51:38 X Indicates the sequence number that will be
Sequence assigned to the next TX data block. Used for
Number verification by the receiver.

37:24 RX Indicates the sequence number that will be
Sequence assigned to the next RX data block. Used for
Number verification by the receiver.

23:0 CRC24 A CRC error check that covers the entire data

block, including the control word with a zero-
filled CRC24 field.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 8 is a diagram of data block with credit control
words. DATA blocks must contain at least one valid data
word or channel credits. DATA blocks are assigned con-
secutive sequence numbers and are written to the retry
buffer. DATA blocks may return ACKs, but the ACKs must
not be resent during a retry. Therefore, DATA blocks should
be written to the retry buffer with ACK=0. ACK insertion
should be performed after the retry buffer but before the
CRC24 calculation.

TABLE 3

Example control word fields of data block with credits.

Field

Bit Position Name Field Description

63:61 Block type “101” indicates a data block with credits for
virtual channels 14-8. “100” indicates a data
block with credits for virtual channels 7-0.
60 ACK Acknowledge 2 blocks correctly received.
59:52 Channel Each bit returns 8 credits for a single channel.
Credits
51:48 D6 Channel for data word 6.
Channel
47:44 D5 Channel for data word 5.
Channel
43:40 D4 Channel for data word 4.
Channel
39:36 D3 Channel for data word 3.
Channel
35:32 D2 Channel for data word 2.
Channel
31:28 D1 Channel for data word 1.
Channel
27:24 DO Channel for data word 0.
Channel
23:0 CRC24 A CRC error check that covers the entire data

block, including the control word with a zero-
filled CRC24 field.

FIG. 9 is a diagram of data blocks with poison control
words. DATA blocks must contain at least one valid data
word with an unrecoverable error. An example of such an
error would be a double-bit error on the message coming
from the local multi-core interconnect unit. The channel
poison field will be used to carry the error to the remote link
partner.

DATA blocks are assigned consecutive sequence numbers
and are written to the retry buffer. DATA blocks may return
ACKs, but the ACKs must not be resent. Therefore, DATA
blocks should be written to the retry buffer with ACK=0.
ACK insertion should be performed after the retry buffer but
before the CRC24 calculation.

TABLE 4

Example control word fields of data block with poison.

Field

Bit Position Name Field Description

63:61 Block type “001” indicates a data block with credits for
virtual channels 14-8. “000” indicates a data
block with poison for virtual channels 7-0.
60 ACK Acknowledge 2 blocks correctly received.
59:52 Poison Each bit indicates poison to the current
message for the respective channel.
51:48 D6 Channel for data word 6.
Channel
47:44 D5 Channel for data word 5.
Channel
43:40 D4 Channel for data word 4.

Channel

US 9,432,288 B2

11
TABLE 4-continued

Example control word fields of data block with poison.

Field

Bit Position Name Field Description

12

mode may be exited whenever a block is received with an
error, the link goes down, the node is reset, or a sync block
is received.

A number of conditions may be required before a SCI
interface may form and send a new data block. A first
condition is that the SCI interface be in normal operation

39:36 D3 Channel for data word 3. . N
Channel mode. A second condition is that TX_X_RETRY_FULL be
3532 D2 Channel for data word 2. 0. A third condition is that the SCI interface have either
Channel channel credits to return or channel data ready to send. In
31:28 D1 Channel for data word 1. 10 .
Chamnel order for channel data to be considered ready to send, the
2724 DO Chanrel for data word 0. SClI interface may be required to have the necessary channel
Channel) credits as indicated by TX_X_CREDITS[channel]. It may
23:0 CRC24 A CRC error check that covers the entire data . .
block, including the control word with a zero- not be required that a newly formed data block contain 7
filled CRC24 field. 15 valid data words, or that a newly formed data block contain
data words from a single channel. However, it may be
FIG. 10 is a state diagram illustrating a method 1000 of required that the newly formed block contain either at least
operating SCI communications at a SCI interface, also one data word or the refurn of RX per-channel credits.
. . When the SCI interface forms and sends a new data block,
referred to as a host. The example SCI interfaces described . . .
. 20 the SCI interface increments TX_X_SEQ_NUM and writes
above with reference to FIGS. 1-3 and 5A-C may be . .
. the data block into the retry buffer at the entry corresponding
configured to operate this method 1000. Further, the data e
blocks implemented in the method may include data blocks to the sequence number. In addition, if 1X_X_SEQ_NUM
P . . y equals TX_X_ACK_SEQ_NUM, the SCI interface will set
configured as described above with reference to FIGS. 4 and TX_X_RETRY_FULL-1.
6-9.)) 25 Whenever the SCI interface correctly receives a data
) Following a reset 01.“ ?.S.CI ¥nterface (1910)’ the SCI block that contains an ACK or an idle block that contains an
interface may enter an initialization mode prior to sending ACK while in normal operation mode, the SCI interface may
and receiving data blocks (1020). The initialization state is increment TX_X_ACK_SEQ_NUM twice. Each ACK may
entered to Verify that the SCI interface and receiver are acknowledge up to two blocks as being received.
synchronized and able to send and receive data blocks. 3° When data is unloaded from one of the per-channel RX
During initialization mode, a SCI interface may continu- data FIFOs, the respective per-channel credits counter
ously send sync blocks. With reference to the sync block of RX_X_CREDITS is incremented. This incrementing con-
FIG. 6, the request/ACK bit may be used to perform a 3-way tinues during the retry mode. The SCI interface returns the
handshake, whereby the SCI interface manages the request/ ;5 credits to the remote link partner in groups of 8. Any given
ACK bits of a continuously sends stream of sync blocks for RX_X_CREDITS countef is decremented :by 8 whenever
the purpose of establishing the variables of Table 5 prior to the SCI, interface sends a DATA /w Credits’ block with the
Lo o respective channel credit bit set.
transmission of data blocks. An initialization handshake may . .
be desi d a hish ority {h handshak When a data block is correctly received, RX_X_ ACK_
© .e51gnat.e ' a mgher priority t an a retry hands axe. 2 CNT may be incremented. This incrementing can continue
During the initialization mode, SCI interfaces synchronize during the retry mode after the retry handshake completes.
their starting state by setting respective variables to common RX_X_ACK_CNT may be cleared during a retry or initial-
values. An example set of variable, and their initial values, ization handshake. When a data block is correctly received,
are provided in the table below. TX_X_ACK_SEQ _NUM may also be incremented. This
TABLE 5

SCI variables and respective initial values upon initialization.

Sequence number assigned to the next newly formed data block. Used as block write address into retry buffer.

Per-channel TX credits. One TX channel credit allows a host to sends one 8-byte data word for the respective

channel. Credits are replenished by the correct reception of data blocks containing TX credits.

Per-channel RX credits, reflecting the number of credits that are scheduled to be returned to the remote link

partner. The initial value of each counter should watch the depth of the respective RX fifo.

Sequence number assigned to the next correctly received data block. During retry mode, given to remote link

Sequence number of next data block sent during retry mode. Used as a block read addres into the retry

Initial

Item value Description
TX_X_SEQ_NUM 0
TX_X_ACK_SEQ_NUM 0 Sequence number of the oldest block which has not been acknowledged.
TX_X_RETRY_FULL 0 Indicates the retry buffer has no room to store a newly formed data block.
TX_X_CREDITS(0. .. 14) 0
RX_X_CREDITS(0 ... 14) ALL
RX_X_SEQ_NUM 0

partner to indicate where to begin resending blocks.
TX_X_RET SEQ_NUM 0

buffer. Seeded by the RX sequence number field received during a retry handshake.
RX_X_ACK_CNT 0

Incremented when a data block is correctly received. Decremented twice when data block sent with ACK = 1.

Cleared during a retry or initialization handshake.

At the completion of a successful initialization handshake

incrementing may also continue during the retry mode after

(1030), the SCI interface switches to normal operating mode 45 the retry handshake completes. TX_X_ACK_SEQ_NUM

(1040). Normal operation mode may be entered upon the
exit of initialization mode or the exit of retry mode. Normal

may be set to RX_X_SEQ_NUM and is cleared during a
retry or initialization handshake.

US 9,432,288 B2

13

In the event of an error (1050), the SCI interface may
enter the retry mode (1060). Retry mode may be entered
whenever a block is received with an error, the link goes
down, or a SYNC block is received with init/retry=1,
Request=1. During the retry mode, the SCI interface may
begin sending SYNC block with init/retry=1.

The request/ACK bit may be used to perform a 3-way
handshake in the retry mode. During the retry handshake,
the SCI interface X may insert RX_X_SEQ_NUM into the
RX sequence number field of all transmitted sync blocks.
The SCI interface may use the RX sequence number field of
received sync blocks to initialize TX_X_RET_SEQ_NUM.
In addition, the SCI interface may clear RX_X_ACK_CNT.

Upon the completion of the retry handshake, the SCI
interface may begin resending data blocks read from the
retry buffer starting at TX_X_RET_SEQ_NUM. Per-chan-
nel TX credits may not be required to send, as the corre-
sponding TX credit counters were already decremented
while forming the blocks. After reading the data block from
the retry buffer, the ACK bit may be set if RX_X_ACK_
CNT is >=2. When a retried data block is sent with the ACK
bit set, RX_X_ACK_CNT may be decremented twice.

When a data block is resent, TX_X_RET_SEQ_NUM
may be incremented. When TX X _REQ_SEQ _NUM
equals TX_X_SEQ_NUM, it is confirmed that blocks have
been resent. Once all blocks have been resent and no
outstanding error remains, the SCI interface may return to
normal operating mode (1040). In the event that an error
occur while resending blocks in the retry mode, the SCI
interface may perform a retry handshake as when entering
retry mode.

It should be understood that the example flow diagrams
presented above can be readily converted to modules, sub-
systems, or systems that operate in a similar manner as set
forth above. For example, the example embodiments may
include an initialization module, computing module, and
reporting module.

It should be further understood that the examples pre-
sented herein can include more or fewer components, be
partitioned into subunits, or be implemented in different
combinations. Moreover, the diagrams herein may be imple-
mented in hardware, firmware, or software. If implemented
in software, the software may be written in any suitable
software language. The software may be embodied on any
form of computer readable medium, such Random Access
Memory (RAM), Read-Only Memory (ROM), or magnetic
or optical disk, and loaded and executed by generic or
custom processor(s).

While this invention has been particularly shown and
described with references to example embodiments thereof,
it will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the scope of the invention encompassed by
the appended claims.

What is claimed is:

1. A method comprising:

generating a data message at a first system-on-chip (SOC)

for transmission to a second SOC, the first and second
SOCs each including a cache and a plurality of pro-
cessing cores;

associating the data message with one of a plurality of

virtual channels;
generating a data block to include data associated with
each of the plurality of virtual channels, the data block
including at least a portion of the data message;

distributing segments of the data block across a plurality
of output ports at the first SOC; and

20

40

45

55

60

14

transmitting the data block to the second SOC via the
plurality of output ports.

2. The method of claim 1, wherein the data block is one
of a plurality of data blocks, and further comprising gener-
ating the plurality of data blocks each to include respective
portions of the data message.

3. The method of claim 2, further comprising:

distributing segments of the plurality of data block across
the plurality of output ports; and

transmitting the plurality of data block to the second SOC
via the plurality of output ports.

4. The method of claim 1, wherein the data message is one
of a plurality of data messages, and further comprising
generating the data block to include at least a portion of each
of the plurality of data messages.

5. The method of claim 1, wherein the data block is a first
data block, and further comprising generating the first data
block to include at least one segment storing an indicator to
confirm that a second data block was received correctly at
the first SOC from the second SOC.

6. The method of claim 1, further comprising maintaining
a credit count for each of the plurality of virtual channels at
the first SOC.

7. The method of claim 6, wherein the data block is a first
data block, and further comprising, in response to receiving
a second data block at the first SOC, incrementing the credit
count of a respective one of the plurality of virtual channels.

8. The method of claim 6, further comprising:

detecting the credit count at the first SOC for the virtual
channel associated with the data block; wherein trans-
mitting the data block is dependent upon the detecting.

9. The method of claim 6, further comprising generating
the data block to include an indicator for incrementing at
least one of the credit counts.

10. The method of claim 1, further comprising storing the
data block to a retry buffer.

11. The method of claim 10, further comprising deleting
the data block from the retry buffer upon receiving an
acknowledge indicator from the second SOC.

12. The method of claim 10, further comprising, upon
receiving an error indicator from the second SOC, retrans-
mitting the data block to the second SOC.

13. The method of claim 1, further comprising generating
the data block to include at least one field indicating an
unrecoverable error.

14. The method of claim 1, further comprising:

transmitting a first initialization block to the second SOC;

receiving a response from the second SOC; and
transmitting a second initialization block to the second
SOC.

15. A system comprising:

a first system-on-chip (SOC) including a first set of
input/output (/O) ports, a first cache, and a first plu-
rality of processors, the first SOC configured to gen-
erate a data message associated with one of a plurality
of virtual channels; and

a second SOC including a second set of I/O ports, a
second cache, and a second plurality of processors,
each of the second set of I/O ports connected to a
respective port of the first set of /O ports via a bus; and

the first SOC including an interface configured to 1)
generate a data block to include data associated with
each of the plurality of virtual channels, the data block
including at least a portion of the data message, and 2)
cause the data block to be transmitted from the first
SOC to the second SOC via the first and second sets of

US 9,432,288 B2

15

1/O ports, the interface further configured to distribute
segments of the data block across the first set of I/O
ports.

16. The system of claim 15, wherein the data block is one
of a plurality of data blocks, and wherein the interface is
further configured to generate the plurality of data blocks
each to include respective portions of the data message.

17. The system of claim 16, wherein the interface is
further configured to 1) distribute segments of the plurality
of data block across the plurality of output ports, and
transmit the plurality of data block to the second SOC via the
plurality of output ports.

18. The system of claim 15, wherein the data message is
one of a plurality of data messages, and further comprising
generating the data block to include at least a portion of each
of the plurality of data messages.

19. The system of claim 15, wherein the interface is
further configured to define a plurality of virtual channels
associated with the first and second set of /O ports, the data
block being associated with at least one of the plurality of
virtual channels.

20. The system of claim 19, wherein the interface is
further configured to maintain a credit count for each of the
plurality of virtual channels at each of the first and second
sets of 1/O ports.

21. The system of claim 20, wherein the interface is
further configured to detect the credit count at the first set of
1/O ports for the virtual channel associated with the data
block, the interface causing the data block to be transmitted
to the second cache based on the detection.

15

20

16

22. The system of claim 20, wherein the interface is
further configured to generate the data block to include an
indicator for incrementing at least one of the credit counts.

23. The system of claim 15, further comprising a retry
buffer, wherein the interface is further configured to store the
data block to the retry buffer.

24. The system of claim 23, wherein the interface is
further configured to delete the data block from the retry
buffer upon receiving an acknowledge indicator from the
second set of ports.

25. The system of claim 23, wherein the interface is
further configured, upon receiving an error indicator from
the second set of ports, to retransmit the data block to the
second set of /O ports.

26. The system of claim 15, wherein the interface is
further configured to transmit first and second initialization
messages from the first set of I/O ports to the second set of
1/O ports, the second initialization message being transmit-
ted following a response message from the second set of I/O
ports.

27. The system of claim 15, wherein the data block
includes a field indicating an unrecoverable error.

28. The system of claim 15, wherein the data block is a
first data block, and wherein the first data block includes at
least one segment storing an indicator to confirm that a
second data block was received correctly at the first set of
1/O ports.

